New Breeding Technologies in the Plant Sciences – Applications and Implications

07 July 2017, Gothenburg

Dr Attila Molnar
University of Edinburgh, UK
Using CRISPR to develop *Arabidopsis* viral resistance
Viral infections in crops threaten global food security

Global food production will have to at least double by 2050 to support our expanding population. (Tilman et al., 2011)

Viruses claim 10-15% of our annual harvest, globally (Regenmortel & Mahy, 2009)

Therefore, mitigating crop losses to viruses is a feasible way to close the gap between food supply and demand. (Ray et al., 2013)
Potyviruses are an important focus for virology research

Potyviruses are the largest taxonomic grouping of all plant viruses (~30% of all plant viruses)

Certain Potyvirus species cause significant damage to economically important crops

eg: Potato Virus Y (PVY)
 Turnip Mosaic Virus (TuMV)

TuMV-GFP infecting Arabidopsis

PVY infecting potato
(Karasev et al., 2013)

TuMV infecting cabbage

(Walsh, 2010)
A brief introduction to *Potyviruses*

Potyviruses exist as flexuous, filamentous virions (approximately 650-900nm long)

Potyviruses have a +ssRNA genome (approximately 10kb long)

The mRNA-like genome is translated using the plant’s translation apparatus

The *potyviral* protein VPg (*Viral Protein genome-linked*) acts as an mRNA cap analogue to aid ‘mRNA mimicry’
Viral specificity for host translation factors – an Achilles heel?

Cellular mRNA can utilise both eIF4E and eIF(iso)4E isoforms

In contrast, TuMV has evolved strict specificity for the eIF(iso)4E isoform
The *Arabidopsis* eukaryotic initiation factor (iso)4E is dispensable for plant growth but required for susceptibility to potyviruses

Anne Duprat¹, Carole Caranta², Frédéric Revers³, Benoît Menand¹, Karen S. Browning⁴ and Christophe Robaglia¹,*

Transposon mutagenesis of *eIF(iso)4E* results in resistance to TuMV

This resistance is *recessive* – ie both alleles must be mutated to render plants resistant
CRISPR/Cas9 induced genome editing

CRISPR/Cas9 is a new genome editing technology.

The Cas9 nuclease can be guided by a synthetic sgRNA (single-guide RNA) to induce double-stranded DNA breaks (DSBs) at almost any genomic site.

DSBs repaired by the cell’s non-homologous end joining (NHEJ) pathway can result in point mutations at the target locus.

Our aim was to use CRISPR/Cas9 technology to knock out *eIF(iso)4E* to generate a novel resistance allele to TuMV.
An sgRNA was designed to target the 5’ of the ORF to disrupt the entire protein by point mutation.

A region with a GG dinucleotide immediately upstream of the PAM was selected to increase the editing efficacy.
<table>
<thead>
<tr>
<th>Plant Generation:</th>
<th>T₀</th>
<th>T₁</th>
<th>T₂</th>
<th>T₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agrobacterium tumefaciens transformation</td>
<td></td>
<td>Selection for transgenic plants with eIF(iso)4E mutation</td>
<td>Segregation of mutation from transgene</td>
<td>Testing mutants for potyviral resistance</td>
</tr>
<tr>
<td>Cas9 sgRNA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Testing mutants for potyviral resistance:
- Wild Type (susceptible)
- eIF(iso)4E mutant (resistant)
Plant Generation:

T_0

$Agrobacterium tumefaciens$ transformation

Selection for transgenic plants with eIF (iso)4E mutation

Segregation of mutation from transgene

Testing mutants for potyviral resistance

Wild Type (susceptible)
eIF(iso)4E mutant (resistant)
Testing for CRISPR/Cas editing by T7 endonuclease assay

- **WT**
- Mutant (Heterozygous)
- Mutant (Homozygous)

elf(iso)4E amplicon

T7 endonuclease digest

Resolve products on gel

<table>
<thead>
<tr>
<th>Ladder</th>
<th>WT</th>
<th>Het</th>
<th>Hom</th>
</tr>
</thead>
<tbody>
<tr>
<td>700bp</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>600bp</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>500bp</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>400bp</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>300bp</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200bp</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100bp</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
eIF\((iso)4E editing detected in the T_1 generation

T$_1$ transformant number 1 was selected to produce *T$_2$* seed
Agrobacterium tumefaciens transformation

Selection for transgenic plants with eIF(iso)4E mutation

Segregation of mutation from transgene

Testing mutants for potyviral resistance

- Wild Type (susceptible)
- eIF(iso)4E mutant (resistant)
‘Weeding out’ the transgene in the T₂ generation

55 transgene-free plants were identified out of 144 T₂ candidates (~38%)

These 55 non-trangenic plant were then screened for CRISPR/Cas9-induced mutations in eIF(iso)4E
Plant Generation:

T_0

T_1

T_2

T_3

Agrobacterium tumefaciens transformation

Selection for transgenic plants with eIF (iso)4E mutation

Segregation of mutation from transgene

Testing mutants for potyviral resistance

- Wild Type (susceptible)
- eIF(iso)4E mutant (resistant)
Identification of *eIF(iso)4E* mutations by Sanger sequencing.
Decoding indels

Wt, wild type; Het, heterozygous; Bi, bi-allelic; Hom, homozygous
Summary of non-transgenic T₂ plants with eIF(iso)4E mutations

55 non-transgenic T₂ plants were analysed by CRISP-ID

59% mutation frequency

<table>
<thead>
<tr>
<th>Sample</th>
<th>Nucleotide Sequence</th>
<th>Mutation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wild Type</td>
<td>TGTGAACGAGCCTCTCC- CGGC CGG</td>
<td>Deletion (-C)</td>
</tr>
<tr>
<td>#44</td>
<td>TGTGAACGAGCCTCTCC--GGCC GG</td>
<td>Insertion (+A)</td>
</tr>
<tr>
<td>#65</td>
<td>TGTGAACGAGCCTCTCCACGGCC GG</td>
<td>Insertion (+T)</td>
</tr>
<tr>
<td>#68</td>
<td>TGTGAACGAGCCTCTCCTCGGC GG</td>
<td>Insertion (+C)</td>
</tr>
</tbody>
</table>
The point mutations in *eIF(iso)*4E induce protein truncation

<table>
<thead>
<tr>
<th>Sample</th>
<th>Amino Acid Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wild Type</td>
<td>1 MATDDVNEPLPAAEELPATEAEKQPHK.LERWSSFDNQSSKGAANWASLRKAYTFDTV</td>
</tr>
<tr>
<td>#44</td>
<td>1 MATDDVNEPLRRRNIYRQRRRRRNHTSSKEGOVGSGITNQRA..PPGELLFVKPILSTP</td>
</tr>
<tr>
<td>#65</td>
<td>1 MATDDVNEPLGQGQGTGDRGETTTQ.ARKKEVFLVR*----------------------------</td>
</tr>
<tr>
<td>#68</td>
<td>1 MATDDVNEPLGQGQGTGDRGETTTQ.ARKKEVFLVR*----------------------------</td>
</tr>
<tr>
<td>#98</td>
<td>1 MATDDVNEPLPQGQGTGDRGETTTQ.ARKKEVFLVR*----------------------------</td>
</tr>
<tr>
<td>Wild Type</td>
<td>60 EDFWGLHETIFQTSLKLTANAEIHFLFKAGVEPKWEDEPCANGKWTWTVVTANRKEALDKGW</td>
</tr>
<tr>
<td>#44</td>
<td>59 SKIFGDCTRLY.............FRLAN*-----------------------------------</td>
</tr>
<tr>
<td>#65</td>
<td>38 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</td>
</tr>
<tr>
<td>#68</td>
<td>38 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</td>
</tr>
<tr>
<td>#98</td>
<td>38 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</td>
</tr>
<tr>
<td>Wild Type</td>
<td>120 LETLMALIGEOFDEADEICGVAHSVQPSKQDKLSLWTTRKTSNEAVLHGIGKKWKEILDV</td>
</tr>
<tr>
<td>#44</td>
<td>75 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</td>
</tr>
<tr>
<td>#65</td>
<td>38 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</td>
</tr>
<tr>
<td>#68</td>
<td>38 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</td>
</tr>
<tr>
<td>#98</td>
<td>38 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</td>
</tr>
<tr>
<td>Wild Type</td>
<td>180 TDKITFNNHDDSRRSRFTV*</td>
</tr>
<tr>
<td>#44</td>
<td>75 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</td>
</tr>
<tr>
<td>#65</td>
<td>38 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</td>
</tr>
<tr>
<td>#68</td>
<td>38 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</td>
</tr>
<tr>
<td>#98</td>
<td>38 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</td>
</tr>
<tr>
<td>Plant Generation:</td>
<td>T_0</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------</td>
</tr>
<tr>
<td>Agrobacterium tumefaciens transformation</td>
<td></td>
</tr>
<tr>
<td>Selection for transgenic plants with eIF (iso)4E mutation</td>
<td></td>
</tr>
<tr>
<td>Segregation of mutation from transgene</td>
<td></td>
</tr>
<tr>
<td>Testing mutants for potyviral resistance</td>
<td></td>
</tr>
<tr>
<td>Wild Type (susceptible)</td>
<td></td>
</tr>
<tr>
<td>eIF(iso)4E mutant (resistant)</td>
<td></td>
</tr>
</tbody>
</table>
Whole tray infections

Wild Type #105 #44

#65 #68

#98 Transposon
Homozygous $eIF(iso)4E$ mutants are completely resistant to TuMV

Absolute TuMV quantification by qPCR
Plant growth is not compromised by $eIF(iso)4E$ knock-out

$F_{4,70} = 1.372, \ p=0.252$

$F_{4,119} = 1.597, \ p=0.180$
Conclusions/Future directions

• Homozygous point mutations at \(eIF(iso)4E \) were generated by CRISPR/Cas9 genome editing, creating complete resistance to TuMV

• We show that these mutations do not affect the dry mass of mature plants or their flowering time, under ‘normal’ growth conditions.

• We hope test in greater detail whether the \(eIF(iso)4E \) mutation would be detrimental to plant growth under certain environments (e.g. stress).

• We plan to test how broad and stable the engineered resistance is by infecting with other viruses/strains.

• Our study provides a proof of concept for generating non-transgenic, virus resistant crops which can later be applied to important crops.
Engineering of CRISPR/Cas9-mediated potyvirus resistance in transgene-free *Arabidopsis* plants

DOUGLAS E. PYOTT, EMMA SHEEHAN AND ATTILA MOLNAR*

Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh EH9 3JR, UK
What did we learn about the CRISPR/Cas9 technology throughout our work with eIF(iso)4E?

1. The ubiquitin promoter confers strong expression of Cas9 in the germline, which results in high number of heritable mutations in progenies.

2. Like in animals, guide RNAs ending with two Gs are very efficient inducers of sequence-specific mutations.

3. T7 endonuclease assay is superior over restriction-enzyme based methods to select for the lines with the highest level of genome editing in T1 population.

4. Direct sequencing of target gene in the T2 population is the fastest and cheapest way to detect homozygous mutations.

5. Growing plants at slightly higher temperature (25-27°C) can promote flowering and subsequently can reduce generation time. Homozygous, transgene-free mutants can be recovered within 4 months from dipping the Arabidopsis flowers in Agrobacterium suspension.
We believe that CRISPR-engineered crops will be acceptable for commercial applications, and should not be restricted by current legislation for genetically modified organisms for the following reasons:

1) While transgenes may be used to initially deliver the CRISPR nuclease/guide RNA complex, they are not needed once the genome has been edited and, because they are located elsewhere in the genome, can be inherited independently of the edited gene. Hence the final engineered product can be made completely free of transgenes by simple breeding.

2) The strategy of knocking out eIF genes mimics natural mutations which have occurred multiple times to give rise to the majority of known Potyvirus resistance alleles. Hence, natural and artificial selection of mutated eIF genes provide testament to the success of this approach. It also reveals that mutated plants pose no additional risks to health or the environment.

3) The mutations induced by CRISPR nuclease-mediated DNA cleavage arise by the cell’s natural process for repairing DNA, which occurs under natural growth conditions (e.g., when DNA is broken by sunlight).
Aknowledgements

Douglas Pyott